Проекты домов Строительство Калькуляторы

Примеры определения реакций опор балки. Определение опорных реакций. Решение задач

Балки предназначены для восприятия поперечных нагрузок. По способу приложения нагрузки делятся на сосредоточенные (действуют на точку) и распределенные (действуют на значительную площадь или длину).

q — интенсивность нагрузки, кн/м

G = q L – равнодействующая распределенной нагрузки

Балки имеют опорные устройства для сопряжения их с другими элементами и передачи на них усилий. Применяются следующие виды опор:

· Шарнирно-подвижная

Эта опора допускает поворот вокруг оси и линейное перемещение параллельно опорной плоскости. Реакция направлена перпендикулярно опорной поверхности.

· Шарнирно-неподвижная

Эта опора допускает поворот вокруг оси, но не допускает никаких линейных перемещений. Направление и значение опорной реакции неизвестно, поэтому заменяется двумя составляющими R A у и R A х вдоль осей координат.

· Жесткая заделка (защемление)

Опора не допускает перемещений и поворотов. Неизвестны не только направление и значение опорной реакции, но и точка её приложения. Поэтому заделку заменяют двумя составляющими R A у, R A х и моментом М А. Для определения этих неизвестных удобно использовать систему уравнений.

∑ m А (F к)= 0

Для контроля правильности решения используется дополнительное уравнение моментов относительно любой точки на консольной балке, например точка В ∑ m В (F к)= 0

Пример. Определить опорные реакции жесткой заделки консольной балки длиной 8 метров, на конце которой подвешен груз Р = 1 кн. Сила тяжести балки G = 0,4 кн приложена посередине балки.

Освобождаем балку от связей, т.е отбрасываем заделку и заменяем её действие реакциями. Выбираем координатные оси и составляем уравнения равновесия.

∑ F kx = 0 R A х = 0

∑ F k у = 0 R A у – G – P = 0

∑ m А (F к)= 0 — M A + G L / 2 + P L = 0

Решая уравнения, получим R A у = G + P = 0,4 + 1 = 1,4 кн

M A = G L / 2 + P L = 0,4 . 4 + 1 . 8 = 9,6 кн. м

Проверяем полученные значения реакций:

∑ m в (F к)= 0 — M A + R A у L — G L / 2 = 0

— 9,6 + 1,4 . 8 – 0,4 . 4 = 0

— 11,2 + 11,2 = 0 реакции найдены верно.

Для балок расположенных на двух шарнирных опорах удобнее определять опорные реакции по 2 системе уравнений, поскольку момент силы на опоре равен нулю и в уравнении остается одна неизвестная сила.

∑ m А (F к)= 0

∑ m В (F k)= 0

Для контроля правильности решения используется дополнительное уравнение ∑ F k у = 0


1) Освобождаем балку от опор, а их действие заменяем опорными реакциями;

2) Заменяем распределенную нагрузку на равнодействующую G = q . L;

3) Выбираем координатные оси;

4) Составляем уравнения равновесия.

∑ F kx = 0 R Вх = 0

∑ m А (F к)= 0 G . L/2 + m — R Ву (L + B)= 0

R Ву = /(L + B) = (6+6) = 2,08 кн

∑ m В (F k)= 0 R A у. (L + B) — Q . (L/2 + B) + m = 0

R A у = / (L + B) = / (6 + 6) = 2,92 кн

Если испытываете трудности в написании , оформите заявку и Вы узнаете сроки и стоимость работы.



5 семестр. Основы функционирования машин и их элементов в системе промышленного сервиса

Теоретическая механика это наука, в которой изучаются общие законы механического движения и механического взаимодействия материальных тел.

Раздел 1.Статика- это раздел механики, в котором изучаются методы преобразования систем сил в эквивалентные системы и устанавливаются условия равновесия сил, приложенных к твердому телу.

Сила - это мера механического взаимодействия тел, определяющая интенсивность и направление этого взаимодействия. Сила определяется тремя элементами: числовым значением (модулем), направлением и точкой приложения. Сила изображается вектором.

Реакцией связи называется сила или система сил, выражающая механическое действие связи на тело.Одним из основных положений механики является пpuнцип освобождаемости т тел от связей, согласно которому несвободное твердое тело можно рассматривать как свободное, на которое кроме задаваемых сил действуют реакции связей.

Задача 1. Определение реакций опор балки под действием плоской произвольной системы сил

Определить реакции R A и R B опор балки, размеры и нагрузки которой показаны на рис. 1,а (поменять значения F и М).


Решение. 1. Составление расчетной схемы . Объект равновесия – балка АС . Активные силы: F = 3 к H , пара сил с M = 4 к H ∙м = 1 кН/м , которую заменяем одной сосредоточенной силой R q = q 1= 13 = 3 к H ; приложенной к точке D на расстоянии 1,5 м от края консоли. Применяя принцип освобождаемости от связей изобразим в точках А и В реакции. На балку действует плоская произвольная система сил, в которой три неизвестных реакции

и .

Ось х направим вдоль горизонтальной оси балки вправо, а ось у - вертикально вверх (рис.1,а).

2. Условия равновесия:


.

3. Составление уравнений равновесия:

4. Определение искомых величин, проверка правильности решения и анализ полученных результатов .

Решая систему уравнений (1 – 3), определяем неизвестные реакции

из (2): кН .

Величина реакции R A х имеет отрицательный знак, значит направлена не так, как показано на рисунке, а в противоположную сторону.

Для проверки правильности решения составим уравнение суммы моментов относительно точки Е.

Подставив в это уравнение значения входящих в него величин, получим:

0,58 ∙ 1 – 4 + 5,02 ∙ 3 – 3 ∙ 3,5 = 0.

Уравнение удовлетворяется тождественно, что подтверждает правильность решения задачи.

Задача 2.Определение реакций опор составной конструкции

Конструкция состоит из двух тел, соединенных шарнирно в точке С . Тело АС закреплено с помощью заделки, тело ВС имеет шарнирно-подвижную (скользящую) опору (рис. 1). На тела системы действуют распределенная по линейному закону сила с максималь­ной интенсивностью q тах = 2 кН/м , сила F = 4 кН под углом α = 30 o и пара сил с моментом М = 3 кНм . Геомет­рические размеры указаны в метрах. Определить реакции опор и усилие, пе­редаваемое через шарнир. Вес элемен­тов конструкции не учитывать.

Рис. 1 Рис. 2

Решение .Если рассмотреть рав­новесие всей конструкции в целом, учитывая, что реакция заделки состо­ит из силы неизвестного направления и пары, а реакция скользящей опоры перпендикулярна опорной поверхно­сти, то расчетная схема будет иметь вид, представленный на рис. 2.

Здесь равнодействующая распреде­ленной нагрузки


расположена на расстоянии двух метров (1/3 длины AD ) от точки А ; М А - неизвестный момент заделки.

В данной системе сил четыре неизвестных реакции (Х А , Y A , M A , R B ), и их нельзя определить из трех уравне­ний равновесия плоской произвольной системы сил.

Поэтому расчленим систему на отдельные тела по шарниру (рис.3).

Силу, приложенную в шарнире, следует при этом учи­тывать лишь на одном теле (любом из них). Уравнения для тела ВС :



Отсюда Х С = – 1 кН ; У С = 0; R B = 1 кН .

Уравнения для тела АС :

Здесь при вычислении момента силы F относительно точки А использована теорема Вариньона: сила F разло­жена на составляющие F cos α и F sin α и определена сум­ма их моментов.

Из последней системы уравнений находим:

Х А = – 1,54 кН ; У А = 2 кН ; М А = – 10,8 кНм .

Для проверки полученного решения составим уравнение моментов сил для всей конструкции относительно точки D (рис. 2):

Вывод: проверка показала, что модули реакций определены верно. Знак минус у реакций говорит о том, что реально они направлены в противоположные стороны.


3. Изгиб. Определение напряжений.

3.3. Определение опорных реакций.

Рассмотрим несколько примеров.

Пример 3.1. Определить опорные реакции консольной балки (рис. 3.3).

Решение. Реакцию заделки представляем в виде двух сил Az и Ay , направленных, как указано на чертеже, и реактивного момента MA .

Составляем уравнение равновесия балки.

1. Приравняем нулю сумму проекций на ось z всех сил, действующих на балку. Получаем Az = 0. При отсутствии горизонтальной нагрузки горизонтальная составляющая реакции равна нулю.

2. То же, на ось y: сумма сил равна нулю. Равномерно распределенную нагрузку q заменяем равнодействующей qaз , приложенной посредине участка aз :

Ay - F1 - qaз = 0,

Откуда

Ay = F1 + qaз .

Вертикальная составляющая реакции в консольной балке равна сумме сил, приложенных к балке.

3. Составляем третье уравнение равновесия. Приравняем нулю сумму моментов всех сил относительно какой-нибудь точки, например относительно точки А:

Откуда


Знак минус показывает, что принятое вначале направление реактивного момента следует изменить на обратное. Итак, реактивный момент в заделке равен сумме моментов внешних сил относительно заделки.

Пример 3.2. Определить опорные реакции двухопорной балки (рис. 3.4). Такие балки обычно называют простыми.

Решение. Так как горизонтальная нагрузка отсутствует, то Az = 0

Вместо второго уравнения можно было использовать условие того, что сумма сил по оси Y равна нулю, которое ы данном случае следует применить для проверки решения:
25 - 40 - 40 + 55 = 0, т.е. тождество.

Пример 3.3. Определить реакции опор балки ломаного очертания (рис. 3.5).

Решение.

т.е. реакция Ay направлена не вверх, а вниз. Для проверки правильности решения можно использовать, например, условие того, что сумма моментов относительно точки В равна нулю.

Полезные ресурсы по теме "Определение опорных реакций"

1. , которая выдаст расписанное решение любой балки. .
Кроме построения эпюр эта программа так же подбирает профиль сечения по условию прочности на изгиб, считает прогибы и углы поворота в балке.

2. , которая строит 4 вида эпюр и рассчитывает реакции для любых балок (даже для статически неопределимых).