Проекты домов Строительство Калькуляторы

Нахождение реакции опор балки. Расчётные схемы балок и определение реакции их опор

Задание

Задана горизонтальная двух опорная балка. Балка нагружена активными силами: сосредоточенной F , распределенной силой интенсивностью q и парой сил с моментом М (табл.2.1 и рис 2.6).

Цель работы построить расчётную схему балки, составить уравнения равновесия балки, определить реакции ее опор и выявить наиболее нагруженную опору.

Теоретическое обоснование

Во многих машинах и сооружениях встречаются конструктивные элементы, предназначенные преимущественно для восприятия нагрузок, направленных перпендикулярно их оси. Расчетные схемы таких элементов (валы, части металлоконструкции и др.) могут быть представлены балкой. Балки имеют опорные устройства для передачи усилий и сопряжения с другими элементами.

Основными типами опор балок являются шарнирно – подвижная, шарнирно – неподвижная опоры и жесткая заделка.

Шарнирно – подвижная опора (рис.2.1,а) допускает поворот балки вокруг оси шарнира и линейное перемещение на незначительное расстояние параллельно опорной плоскости. Точкой приложения опорной реакции является центр шарнира. Направление реакции R – перпендикуляр к опорной поверхности.

Шарнирно – неподвижная опора (рис.2.1,6) допускает только поворот балки вокруг оси шарнира. Точкой приложения являются также центр шарнира. Направления реакции здесь неизвестно, оно зависит от нагрузки, приложенной к балке. Поэтому для такой опоры определяются две неизвестные – взаимно перпендикулярные составляющие R x и R y опорной реакции.

Жесткая заделка (защемление) (рис.2.1,в) не допускает ни линейных перемещений, ни поворота. Неизвестными в данном случае являются не только величина, но и её точка приложения. Таким образом, для определения опорной реакции необходимо найти три неизвестные: составляющие R x и R y по осям координат и реактивный момент MR относительно центра тяжести опорного сечения балки.

А б в

Рис.2.1

Равновесие балки под действием любой системы заданных сил, расположенных в одной плоскости, может быть обеспечено одной жёсткой заделкой или двумя опорами – подвижной и неподвижной. Балки называются соответственно консольными (рис.2.2,а) или двух опорными (рис.2.2,б)

Рис.2.2

На балку действуют заданные силы и пары сил. Силы по способу приложения делятся на распределенные и сосредоточенные. Распределенные нагрузки задаются интенсивно q, Н/м и длиной 1, м. равномерно распределенные нагрузки условно изображаются в виде прямоугольника, в котором параллельные стрелки указывают, в какую сторону действует нагрузка (рис.2.3). В задачах статики равномерно – распределенную нагрузку можно заменять равнодействующей сосредоточенной силой Q, численно равной произведению q * 1, приложенной посредине длины и направленной в сторону действия q.



Рис.2.3 Рис. 2.4

Сосредоточенные нагрузки приложены на сравнительно небольшой длине, поэтому считается, что они приложены в точке. Если сосредоточенная сила приложена под углом к балке, то для определения реакции опор удобно разложить её на две составляющие – F x = Fcos α и F y =F sin α (рис.2.4).

Реакции опор балки определяются из условий равновесия плоской системы произвольно расположенных сил. Для плоской системы можно составить три независимых условия равновесия:

∑F ix = 0; ∑F iy = 0; ∑M io = 0 или

∑М ia = 0; ∑M iB = 0; ∑M iC = 0 или } (2.1)

∑M iA = 0; ∑M iB = 0; ∑F ix = 0.

Где О, А,В, С – центры моментов.

Рационально выбрать такие уравнения равновесия, в каждое из которых входила бы по одной неизвестной реакции.

Порядок выполнения работы

1. В соответствии с заданием изобразить балку и действующие заданные силы.

Выбрать расположение координатных осей: совместить ось х с балкой, а ось у направить перпендикулярно оси х.

1. Произвести необходимые преобразования: силу, наклоненную к оси балки под углом а, заменить двумя взаимно перпендикулярными составляющими, а равномерно распределенную нагрузку – её равнодействующей.

2. Освободить балку от опор, заменив их действие реакциями опор, направленными вдоль осей координат.

3. Составить уравнения равновесия балки, чтобы решением каждого из трёх уравнений было определение одной из неизвестных реакций опор.

4. Проверить правильность определения реакций опор по уравнению, которое не было использовано для решения задач.

5. Сделать вывод о наиболее нагруженной опоре.

6. Ответить на контрольные вопросы.

Контрольные вопросы

1.Сколько независимых уравнений равновесия можно составить для плоской системы параллельных сил?

2.Какие составляющие реакции опор балок возникают в шарнирно – подвижной, шарнирно – неподвижной опорах и жёсткой заделке?

3.Какую точку целесообразно выбрать в качестве центра момента при определении реакций опор?

4.Какая система является статически неопределимой?

Пример выполнения

1.Задание:

q = 5 H/м, F = 25 H, M = 2 H*м, α = 60°

2.Преобразование заданных сил:

F x = F cos α = 25cos 60° = 12.500H, F y = F sinα = 25 sin60° = 21.625H

Q = q*1 = 5*6 =30 H.

Рис.2.5

3.Составим расчётную схему (рис.2.5)

4.Уравнения равновесия и определение реакций опор:

а) ∑M ia = 0; -Q *3 – F y * 7.5+ R B * 8.5 – M = 0;

б) ∑M iB =0: - R Ay *8.5 + Q *5.5 + F y *1 – M = 0:

в) ∑F ix =0: R Ax + F x =0: R Ax = - F x = - 12.500H.

5.Проверка:

∑F iy = 0; R Ay = Q – F y + R B = 0; 21.724 – 30 – 21.651 + 29.927 = 0; 0 = 0

Наиболее нагруженной является опора В – R B =29.927 Н. Нагрузка на опору А – R A =

Литература:

Таблица 2.1

№ варианта № схемы на рис. 2.6 q , Н/м F, Н М, Н м , град
4,5
2,5
4,5
3,5
6,5
1,5
0,5

Балка – это конструктивная деталь в виде прямого бруса, закрепленного на опорах, и изгибаемая приложенными к ней силами.

Высота сечения балки незначительна по сравнению с ее длиной. Балки используются в строительстве, машиностроений, авиаций и кораблестроений.

Балки являются основными элементами конструкций и по этому, расчет балки являются важной и ответственной задачей.

Балка называется статически определимой, если число опорных реакции в балке, не превышает числа уравнений равновесия системы.

Виды статически определимых балок:

Часто встречаются следующие поперечные сечения балок:

Виды нагрузок.По способу приложения нагрузки делятся на сосредоточенные, и распределенные. Если передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузка называется сосредоточенной.

Если нагрузка распределена по значительной площадке или линии (давление воды на плотину, снега на крышу и т. д.), то она является распределенной. При расчете распределенную нагрузку приводим в сосредоточенную нагрузку, по формуле , здесь интенсивность распределенной нагрузки, длина распределенной нагрузки. Полученная сосредоточенная сила должна быть приложена в центре распределенной нагрузки.

При воздействии нагрузок на балку, со стороны крепления (жесткая заделка, шарнирно подвижная и неподвижная опора) на балку действует силы реакций, для того чтобы рассчитать балку на изгиб, надо определить эти опорные реакций.



Алгоритм определения опорных реакций статически определимых балок:

1. Отбрасываем связи и заменяем их реакциями.

2. В случае действия распределенной нагрузки приводим в сосредоточенную нагрузку.

4. Принимает оси координат.

6. Решаем составленные уравнения, и определяем опорные реакций.

Контрольные вопросы

1. Что такое балка, где они используются?

_______________________________________________________________________________________________

2. Перечислите поперечные сечения балок…

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

3. Что такое статически определимая балка?

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

4. Какие виды нагрузок знаете?

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

5. Какой буквой обозначается интенсивность распределенной нагрузки, и

укажите единицу измерения интенсивности распределенной нагрузки?

__________________________________________________________________

6. По какой формуле распределенная нагрузка приводиться в сосредоточенную нагрузку?

__________________________________________________________________

7. Где нужно приложить приведенную сосредоточенную силу?

__________________________________________________________________

8. Алгоритм определения статически определимой балки:

Пример 2.1.

Определить реакции опор балки (рис. 22.).

1. Отбрасываем связи и заменяем их реакциями (рис. 23б.).

2. В случае действия распределенной нагрузки приводим в сосредоточенную нагрузку (рис. 23б.).

3. Если есть сосредоточенные и распределенные нагрузки, оставляем нагрузки в точке их действия.

4. Принимает оси координат.

5. Составляем уравнения равновесия:

6.

Сумма проекции сил относительно оси должна равняться нулю:

Отсюда определяем .

4) отсюда определяем

Таким образом, мы определили опорные реакции и , для проверки результатов можем, воспольвоваться вторым уравнением:

Есть равновесия относительно оси , значить мы правильно определили опорные реакции.

Ответ: и .

Пример 2.2.

Определить реакции опор балки (рис. 24.).

1. Отбрасываем связи и заменяем их реакциями (рис. 25б.).

2. В случае действия распределенной нагрузки приводим в сосредоточенную нагрузку (рис. 25б.).

3. Если есть сосредоточенные и распределенные нагрузки, оставляем нагрузки в точке их действия.

4. Принимает оси координат.

5. Составляем уравнения равновесия:

Сумма проекции сил относительно оси должна равняться нулю:

; _______________

Сумма проекции сил относительно оси должна равняться нулю:

От второго уравнения не сможем определить или .

Составляем, трете уравнение, сумма моментов относительно точки должна равняться нулю:

_____________________________________

_____________________________________

_____________________________________

_____________________________________

По условию равновесия сумма моментов относительно любой точки должна равняться нулю, по этому, составляем уравнение равновесие относительно точки . То есть, сумма моментов относительно точки тоже должна равняться нулю.

4) _______________________________________

_____________________________________

_____________________________________

_____________________________________

Таким образом, мы определяем опорные реакции и , для проверки результатов можем, воспольвоваться вторым уравнением:

С двух сторон равенства должна получиться одинаковые числа, тогда будет равновесия относительно оси . Если вышли одинаковые числа, значить мы можем считать что, правильно определили опорные реакции. Если не выходят, значить вы допустили ошибку!

Ответ: и .

Для решения второй задачи контрольной работы 1 (задачи 11-20) следует выполнить следующие действия:

1) Изучить темы 3,4,5.

2) Ответить на контрольные вопросы по темам 3,4,5.

2) Выполнить самостоятельно пример 2.2.

Схему и данные своего варианта для второй задачи контрольной работы 1 возьмете с рисунка 26.


Рассмотренный в § 2.7 свободный брус был нагружен заданными нагрузками (силами и моментами), находящимися в равновесии (см. рис. 3.7). Обычно заданные нагрузки не бывают взаимно уравновешенными; неподвижность конструкции под действием этих нагрузок обеспечивается благодаря наличию опор, соединяющих ее с основанием. В опорах возникают реакции, которые вместе с заданными нагрузками представляют уравновешенную систему внешних сил, действующих на конструкцию.

Как известно из курса теоретической механики, любое тело обладает в плоскости тремя степенями свободы. Поэтому для обеспечения геометрической неизменяемости системы (бруса) необходимо наложить на нее (в плоскости) три связи.

Рассмотрим различные типы опор плоских систем.

1. Защемление, или заделка (рис. 4.7, а). Защемленный (или заделанный) конец бруса не может ни смещаться поступательно, ни поворачиваться. Следовательно, число степеней свободы бруса с защемленным концом равно нулю. В опоре могут возникать: вертикальная реакция (сила R - рис. 4.7, а), препятствующая вертикальному смещению конца бруса; горизонтальная реакция (сила Н), исключающая возможность его горизонтального смещения и реактивный момент препятствующий повороту. Таким образом, закрепление бруса с помощью заделки накладывает на него три связи и обеспечивает его неподвижность.

2. Шарнирно неподвижная опора (рис. 4.7, б). Поперечное сечение бруса, проходящее через шарнирно неподвижную опору, не может смещаться поступательно. В опоре возникает реактивная сила, проходящая через центр шарнира. Ее составляющими являются вертикальная сила R, препятствующая вертикальному смещению, и горизонтальная сила Н, исключающая горизонтальное смещение закрепленного сечения бруса. Опора не препятствует повороту бруса относительно центра шарнира, и, следовательно, брус, закрепленный при помощи одной такой опоры, имеет одну степень свободы. Закрепление бруса с помощью шарнирно неподвижной опоры, накладывает на него две связи.

3. Шарнирно подвижная опора (рис. 4.7, в). Поперечное сечение бруса, проходящее через шарнирно подвижную опору, может смещаться параллельно опорной плоскости и поворачиваться, но оно не может смещаться перпендикулярно к опорной плоскости. В опоре возникает только одна реакция в виде силы R, перпендикулярной к опорной плоскости. Закрепление бруса с помощью такой опоры накладывает на него одну связь.

Рассмотренные типы опор принято также изображать с помощью стерженьков.

Шарнирно подвижную опору изображают в виде стерженька, имеющего по концам шарниры (рис. 5.7, а). Нижний шарнир неподвижен, а верхний может смещаться лишь по прямой линии, перпендикулярной к оси стерженька.


Это соответствует тем условиям закрепления, которые обеспечивает шарнирно подвижная опора (см. рис. 4.7, в). Опорная реакция действует только вдоль оси стерженька. Собственные деформации его при расчетах не учитываются, т. е. стерженек считается бесконечно жестким.

Шарнирно неподвижную опору изображают с помощью двух стерженьков с шарнирами по концам (рис. 5.7, б). Верхний шарнир является общим для обоих стерженьков. Направления стерженьков могут быть произвольными. Они, однако, не должны быть расположены на одной прямой.

Заделку (защемление) можно изображать с помощью трех стерженьков с шарнирами по концам, как показано на рис. 5.7, в.

Число стерженьков в схематическом изображении опоры равно числу составляющих опорной реакции и числу связей, накладываемых этой опорой на конструкцию.

Для того чтобы брус не перемещался под нагрузкой, он должен быть геометрически неизменяемо (неподвижно) соединен с основанием, что в случае плоского действия сил, как уже отмечалось, достигается путем наложения на него трех внешних связей.


Это можно сделать с помощью одной заделки (рис. 6.7, а) или одной шарнирно неподвижной и одной шарнирно подвижной опоры (рис. 6.7, б), или с помощью трех шарнирно подвижных опор, направления реакций которых не пересекаются в одной точке (рис. 6.7, в).


Если направления трех опорных стерженьков пересекаются в одной точке О (рис. 7.7, а,б), то система является мгновенно изменяемой, так как в этом случае ни один опорный стерженек не препятствует весьма малому повороту бруса вокруг точки О; такое расположение опорных стерженьков недопустимо.

Рассмотрим геометрически неизменяемые системы, состоящие из нескольких брусьев.


На рис. 8.7, а, например, показана система из двух брусьев (АВ и ВС), на каждый из которых наложено три связи. На брус ВС одну связь накладывает опорный стерженек CD, препятствующий вертикальному смещению точки С бруса, и две связи - шарнир В, препятствующий вертикальному и горизонтальному смещению точки В бруса.

На брус АВ все три связи налагает заделка А; шарнир же В не может препятствовать ни поступательным смещениям, ни поворотам бруса АВ и, следовательно, не налагает на него связей.

На рис. 8.7, б показана геометрически неизменяемая система, состоящая из трех брусьев (АС, CD и DF). На каждый из них наложено три связи. Так, например, шарнир С налагает на брус CD две связи (так как препятствует горизонтальному и вертикальному смещениям точки С), а шарнир - одну связь (так как препятствует только вертикальному смещению точки ).

Системы, изображенные на рис. 8.7, называются многопролетными шарнирными балками.

Общее число неизвестных опорных реакций при вариантах закрепления бруса, показанных на рис. 6.7, а, б, в, равно трем. Следовательно, эти реакции можно найти при помощи трех уравнений равновесия, которые составляются для плоской системы сил. По значениям же опорных реакций и внешних нагрузок можно определить [по формулам (2.7) - (4.7)] внутренние усилия в любом поперечном сечении бруса. Поэтому брус, закрепленный путем наложения на него трех связей, является не только геометрически неизменяемым, но и статически определимым. Наложение на него большего числа связей делает брус статически неопределимым, так как в этом случае все опорные реакции нельзя определить из одних лишь уравнений равновесия.

Уравнения равновесия, составляемые для определения опорных реакций, можно представить в трех различных вариантах:

1) в виде сумм проекций сил на две произвольные не параллельные друг другу оси и суммы моментов сил относительно любой точки плоскости МО);

2) в виде суммы проекций сил на произвольную ось и двух сумм моментов относительно любых точек плоскости, не лежащих на одном перпендикуляре к указанной оси проекций

3) в виде трех сумм моментов относительно любых точек плоскости, не лежащих на одной прямой

Выбор того или иного варианта составления уравнений равновесия, а также выбор точек и направлений осей, используемых при составлении этих уравнений, производится в каждом конкретном случае с таким расчетом, чтобы по возможности не проводить совместное решение уравнений. Для проверки правильности определения опорных реакций полученные их значения рекомендуется подставить в какое-либо уравнение равновесия, не использованное ранее.

На многопролетную шарнирную балку, изображенную на рис. 8.7, а, наложено четыре внешние связи (три в сечении А и одна в сечении С), а на балку, изображенную на рис. 8.7, б, - пять внешних связей (две в сечении А и по одной в сечениях В, Е и F).

Однако если на каждый брус, составляющий многопролетную шарнирную балку, наложено по три связи, то эта балка статически определима и опорные реакции можно найти из уравнений статики.

Кроме трех уравнений равновесия всех сил, действующих на многопролетную шарнирную балку, составляются уравнения, выражающие равенство нулю моментов сил, приложенных по одну сторону от каждого шарнира (соединяющего отдельные части балки), относительно центра этого шарнира. Например, для балки, изображенной на рис. 8.7, а, кроме трех уравнений равновесия всех действующих на нее сил, составляется уравнение моментов левых (или правых) сил относительно шарнира , а для балки, изображенной на рис. 8.7,б, - относительно шарниров С и D.

Рассмотрим пример определения опорных реакций простой однопролетной балки, расчетная схема которой изображена на рис. 9.7, а. Отбросим опоры и заменим их влияние на балку опорными реакциями RA, Н и RB (рис. 9.7, б). Обычно балка с отброшенными опорами отдельно не изображается, а обозначения и направления опорных реакций указываются на расчетной схеме балки. Реакции представляют собой вертикальную и горизонтальную составляющие полной реакции шарнирно неподвижной опоры А; сила же является полной реакцией опоры В. Направления опорных реакций выбираются произвольно; если в результате расчета значение какой-либо реакции получается отрицательным, то, значит, в действительности ее направление противоположно предварительно принятому.

Аналогично составим сумму моментов всех сил относительно точки А:

Для проверки найденных значений опорных реакций составим сумму проекций всех сил на ось у.

Составленное уравнение удовлетворяется, что указывает на правильность определения опорных реакций.